Employment
- University of Tokyo, Project Assistant Professor in the Center for Data-Driven Discovery at Kavli-IPMU, 2024—present
Education
- Princeton University, PhD Physics, 2019—2024
- advisor: David N. Spergel
- graduate courses: QFT I, Extragalactic Astronomy, Cosmology, General Relativity, Condensed Matter
- Perimeter Institute for Theoretical Physis, MSc, 2018—2019
- advisor: Kendrick M. Smith, co-advisor: J. Colin Hill
- thesis: Capturing non-Gaussianity: Analytic model for the one-point probability distribution function of cosmological fields within the halo model
- graduate courses: QFT I & II, Statistical Mechanics, Condensed Matter, Cosmology, General Relativity, Machine Learning
- University of Oxford, BA First Class, 2015—2018
- ranked top of the cohort (~130 students) in years 2 and 3
Publications
1st author
- L. Thiele, , , , , , ,
Neutrino mass constraint from an Implicit Likelihood Analysis of BOSS voids,
2023, ApJ 969, 89, arXiv:2307.07555 [astro-ph.CO] - L. Thiele, , , ,
Cosmological constraints from HSC Y1 lensing convergence PDF,
2023, PRD 108, 123526, arXiv:2304.05928 [astro-ph.CO] - L. Thiele, , , , ,
Predicting the Thermal Sunyaev-Zel’dovich Field using Modular and Equivariant Set-Based Neural Networks,
2022, MLST 3, 035002, arXiv:2203.00026 [astro-ph.CO], poster presented at the Fourth Workshop on Machine Learning and the Physical Sciences (NeurIPS 2021) - L. Thiele, , , , , , , , , ,
Percent-level constraints on baryonic feedback with spectral distortion measurements,
2022, PRD 105, 083505, arXiv:2201.01663 [astro-ph.CO] - L. Thiele, , , , ,
Can small-scale baryon inhomogeneities resolve the Hubble tension? An investigation with ACT DR4,
2021, PRD 104, 063535, arXiv:2105.03003 [astro-ph.CO] - L. Thiele, , ,
Accurate Analytic Model for the Weak Lensing Convergence One-Point Probability Distribution Function and its Auto-Covariance,
2020, PRD 102, 123545, arXiv:2009.06547 [astro-ph.CO] - L. Thiele, , , , ,
Teaching neural networks to generate Fast Sunyaev Zel’dovich Maps,
2020, ApJ 902, 129, arXiv:2007.07267 [astro-ph.CO] - L. Thiele, , ,
Disentangling magnification in combined shear clustering analyses,
2020, MNRAS 491, 1746, arXiv:1907.13205 [astro-ph.CO] - L. Thiele, , ,
Accurate analytic model for the thermal Sunyaev-Zel’dovich one-point probability distribution function,
2019, PRD 99, 103511, arXiv:1812.05584 [astro-ph.CO]
2nd & 3rd author
- L. Thiele, , , , , , , , ,
Cosmology from HSC Y1 Weak Lensing with Combined Higher-Order Statistics and Simulation-based Inference,
2024, arXiv:2409.01301 [astro-ph.CO]
, - L. Thiele, , , ,
Impact of baryonic feedback on HSC Y1 weak lensing non-Gaussian statistics,
2024, arXiv:2403.03807 [astro-ph.CO]
, , - L. Thiele, , , , , , ,
Predicting the impact of feedback on matter clustering with machine learning in CAMELS,
2023, MNRAS 526, 4, arXiv:2301.02231 [astro-ph.GA]
, , - L. Thiele, , , , , , , , , ,
The SZ flux-mass (Y-M) relation at low halo masses: improvements with symbolic regression and strong constraints on baryonic feedback,
2022, MNRAS 522, 2, arXiv:2209.02075 [astro-ph.CO]
, - L. Thiele, ,
An exploration of the properties of cluster profiles for the thermal and kinetic Sunyaev-Zel’dovich effects,
2022, MNRAS 517, 420, arXiv:2205.01710 [astro-ph.CO]
, , - L. Thiele, , , , , , , , ,
Augmenting astrophysical scaling relations with machine learning: application to reducing the SZ flux-mass scatter,
2022, PNAS 120(12 , arXiv:2201.01305 [astro-ph.CO]
, - L. Thiele,
Effective Geometry Monte Carlo: A Fast and Reliable Simulation Framework for Molecular Communication,
2019, IEEE Access 7, 28635
, , - L. Thiele, ,
The effective geometry Monte Carlo algorithm: applications to molecular communication,
2019, PLA 383, 2594, arXiv:1809.06438 [cs.ET]
,
Nth author
- L. Thiele, , , , ,
Cosmological constraints using Minkowski functionals from the first year data of the Hyper Suprime-Cam,
2024, arXiv:2410.00401 [astro-ph.CO]
, , , - L. Thiele, , ,
The Primordial Inflation Explorer (PIXIE): Mission Design and Science Goals,
2024, arXiv:2405.20403 [astro-ph.CO]
, , , , , , , , , , , , , , - L. Thiele, , , ,
Cosmological constraints from weak lensing scattering transform using HSC Y1 data,
2024, arXiv:2404.16085 [astro-ph.CO]
, , , - L. Thiele, , , , , , ,
Cosmology from weak lensing peaks and minima with Subaru Hyper Suprime-Cam survey first-year data,
2023, MNRAS 528, 3, arXiv:2308.10866 [astro-ph.CO]
, , , - L. Thiele, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
The CAMELS project: public data release,
2022, ApJS 265, 54, arXiv:2201.01300 [astro-ph.CO]
, , , , , , , , , , , , , - L. Thiele, ,
BISOU: a balloon project to measure the CMB spectral distortions,
2021, 16 , arXiv:2111.00246 [astro-ph.IM]
, , , , , , , , , , , , , , , , , , , , , , , , , - L. Thiele, , , , , , , , , , , , , , , , , , , , , , , , ,
The CAMELS Multifield Dataset: Learning the Universe’s Fundamental Parameters with Artificial Intelligence,
2021, ApJS 259, 61, arXiv:2109.10915 [cs.LG]
, , , - L. Thiele, , , , , , , ,
Robust marginalization of baryonic effects for cosmological inference at the field level,
2021, arXiv:2109.10360 [astro-ph.CO]
, , , , , , - L. Thiele, , , , , ,
Multifield Cosmology with Artificial Intelligence,
2021, arXiv:2109.09747 [astro-ph.CO]
, , , , , , , - L. Thiele,
Massive vector fields in Kerr–Newman and Kerr–Sen black hole spacetimes,
2020, JHEP 159, arXiv:1912.08224 [hep-th]
, , , , , , , - L. Thiele,
Principal Tensor Strikes Again: Separability of Vector Equations with Torsion,
2019, PLB 795, 650, arXiv:1906.10072 [hep-th]
, , , , ,
Academic Honors
- Kusaka Memorial Prize in Physics (Princeton, 2022, $3k)
- Member of the German Academic Scholarship Foundation (2015-2019, $40k)
- Perimeter Scholars International Award (Perimeter, 2018, $34k)
- Scott Prize for best performance in the 3rd year (Oxford, 2018, $500)
- Winton Capital Prize for best performance in the 2nd year (Oxford, 2017, $300)
- BP Scholarship (Oxford, 2017, $2.6k)
- Rokos Award for summer research project (Oxford, 2016, $1k)
Professional Service
reviewer for ApJ, MNRAS, NeurIPSTalks
5/20 | CCA Cosmo x ML |
5/20 | Princeton/IAS cosmo lunch |
5/20 | Perimeter Institute |
9/20 | German Astronomical Society |
10/20 | MPA Garching |
8/21 | CMB-S4 meeting |
8/21 | Learn the Universe @ CCA |
1/22 | Cosmology Talks |
1/22 | AAS 239 |
3/22 | IAS astro coffee |
9/22 | UCL Physics & Astronomy |
2/23 | Princeton gravity group |
3/23 | IPMU |
4/23 | Nagoya |
9/23 | Cosmo Madrid |
9/23 | Institute d’Astrophysique Spatiale Orsay |
9/23 | IPMU CD3 seminar |
10/23 | BCCP seminar UC Berkeley |
10/23 | DESI lunch Berkeley Lab |
10/23 | CMB constellation meeting KIPAC Stanford |
10/23 | CCA Cosmo x ML tristate meeting |
01/24 | AI4Phys @ IPMU |
02/24 | Yale cosmology seminar |
05/24 | MPA cosmology seminar |
06/24 | LSS Quest Osaka |
Teaching
Astro-AI Asia Network (A3Net) summer school, 2024, Osaka, Basic Deep Learning